If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2t^2+5t=13
We move all terms to the left:
2t^2+5t-(13)=0
a = 2; b = 5; c = -13;
Δ = b2-4ac
Δ = 52-4·2·(-13)
Δ = 129
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{129}}{2*2}=\frac{-5-\sqrt{129}}{4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{129}}{2*2}=\frac{-5+\sqrt{129}}{4} $
| 4x-8+x+28=90 | | 2(a+3)+3(2a-1=19 | | 1y+1.8=-3.2 | | 5/6x-9=-4 | | 18x-2=7x+3 | | 15y+20=(-4)-(-12y) | | |4x-6-22|=4 | | 53x-4=73x-5 | | 6b-10=5b+20 | | -11+39=-4(x+3) | | 9m-3=5m+37 | | 16x+9x=-21 | | -2/3y-3/5y=-3/5-1/2 | | -4(x+5)+9=-11 | | 15(x-7)=150 | | 16x+9x=21 | | 2x/3•2=180 | | 5e+7=4e+14 | | 16+9x=-21 | | 12(x+4)=5(x+1)-6(3-x | | 8x-2=2x+1+1+2x | | C(x)=0.47x+20 | | 12x-2(x-1)=22 | | -2.5+p=7.5 | | 7(3x-1)+2(x-7)=3(6x-1) | | -21+9x=16x | | 8x-2=2x+1+2x | | 2+3×x=17 | | 2(x+4)=-32 | | 1x+80=2x+0.75 | | 25x+7=28 | | 7c−9=2c−4 |